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Kolmogorov Scaling in Truncated 3-D Euler Flows
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ABSTRACT: Kolmogorov-like turbulence is obtained during an intermediate regime of the spon-
taneous relaxation of (time-reversible) spectrally-truncated Euler equations towards absolute equi-
librium. Dissipative effects are estimated near the equilibrium using Monte-Carlo methods and
Fluctuation Dissipation relations. Scaling laws are derived for the wavenumbers at which dissipa-
tion becomes relevant. Possible experimental investigations of this new regime of turbulence, using
visco-elastic materials, are suggested.

PACS numbers: 47.27.Eq,05.20.Jj, 83.60.Df

The dynamics of spectrally truncated time reversible
nonlinear equations has already been studied in the par-
ticular cases of 1-D Burgers-Hopf models [1] and 2-D
quasi-geostrophic flows [2]. A central point in these stud-
ies was the nature of the statistical equilibrium that is
achieved at large times [3] . Several equilibria are a pri-

ori possible because both (truncated) 1-D Burgers-Hopf
and 2-D quasi-geostrophic flow models admit, besides the
energy, a number of additional conserved quantities.

The purpose of the present Letter is to study the dy-
namics of spectrally truncated 3-D incompressible Euler
flows. This problem is of a different nature because (ex-
cept for helicity that identically vanishes for the flows
considered here) there is no known additional conserved
quantity [4] and the equilibrium is thus unique. The cen-
tral problem in truncated 3-D Eulerian dynamics is that
of the mechanism of relaxation toward that equilibrium.

The main result of this Letter is that large-scale Eule-
rian dynamics together with small-scale statistical equili-
bration seem to be enough to generate Kolmogorov scal-
ing at intermediate scales. Note that the short-time (i.e.
spectrally converged) truncated Eulerian dynamics has
been extensively studied [5] in order to obtain numerical
evidence for or against blowup [6] of the original (untrun-
cated) Euler equation.

The three-dimensional incompressible Euler equations
for a fluid of unit density,

∂tv + (v · ∇)v = −∇p , (1)

∇ · v = 0 , (2)

are solved numerically using standard [7] periodic
pseudo-spectral methods with resolution N . The solu-
tions are dealiased by spectrally truncating the modes
for which at least one wave-vector component exceeds
N/3 (thus a 10243 run is truncated at kmax = 341). This
method amounts to a Galerkin truncation of the original
equations and exactly conserves the energy.

Time marching is done with a second-order leapfrog
finite-difference scheme, even and odd time-steps are pe-
riodically re-coupled using fourth-order Runge-Kutta.

The energy spectrum is defined by averaging v̂(k′, t)
(the spatial Fourier transform of the solution to Eq. (1))
on spherical shells of width ∆k = 1,

E(k, t) =
1

2

∑

k−∆k/2<|k′|<k+∆k/2

|v̂(k′, t)|2 . (3)

It is well known [3, 8] that the truncated equations (1),
(2) admit statistically stationary exact solutions, the so-
called absolute equilibria, with Gaussian distribution f∗

and energy spectra E(k) = cte × k2. Furthermore, the
temporal fluctuations around the equilibria are related
to the equilibrium correlation functions by a Fluctuation
Dissipation Theorem (FDT). Indeed, let S(t) denote the
equilibrium response-functions, defined by

Sij
(k,k′)(t) =

∫

f∗(v̂0)
∂v̂i(t,k)

∂v̂j(0,k)
Dv̂0. (4)

In this equation, v̂(0,k) represents an initial velocity
field, v̂(t,k) represents the velocity field at time t ob-
tained from v̂(0,k) by the equations of motion and v̂0

stands for the set of all v̂i(0,k) components; Dv̂0 is the
usual Lebesgue measure in v̂0-space. Let also ∆(t) denote
the equilibrium correlations, defined by:

∆ij
(k,k′)(t) =

∫

f∗(v̂0)v̂
i(t,k)v̂j(0,k)Dv̂0. (5)

The FDT [9, 10] states that S(t) is proportional, with
constant coefficients, to the time-derivative of ∆. Conse-
quently, the time-evolutions of S and ∆ are characterized
by the same characteristic time, say τC .

To study relaxation toward absolute equilibrium, we
use the so-called Taylor-Green [11] single–mode initial
data uTG = sin(x) cos(y) cos(z), vTG = uTG(y,−x, z),
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wTG = 0. Symmetries are employed in a standard way
[12] to reduce memory storage and speed up computa-
tions. Runs were made with N = 256, 512 and 1024.
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FIG. 1: Energy spectra, top: resolution 10243 at t =
(6.5, 8, 10, 14) (⋄,+,◦,∗); bottom: resolutions 2563 (triangle
△), 5123 (cross ×) and 10243 (cross +) at t = 8, the dashed
line indicates k2 scaling.

Figure 1 displays the time evolution (top) and reso-
lution dependence (bottom) of the energy spectra. It
is apparent that a wavevector kmin (such that E(k) ≥
E(kmin)) spontaneously appears in the flow. The modes
with k > kmin appear to be in absolute equilibrium (see
the dashed line at the bottom of the figure). Defining the
thermalized (or dissipated) energy Eth by

Eth(t) =
∑

kmin<k

E(k, t) , (6)

the time evolutions of kmin and Eth are presented on
figure 2. It is apparent on the figure that, for all reso-
lutions, kmin decreases and Eth increases with time and
that, for all times, kmin increases and Eth decreases with
the resolution.

A first hint for Kolmogorov behavior is given by the
energy dissipation rate

ε(t) =
dEth(t)

dt
. (7)

Indeed, perhaps one of the main quantitative results of
this paper is the excellent agreement of the energy dissi-
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FIG. 2: Time evolution of kmin (left vertical axis) and Eth

(right vertical axis) at resolutions 2563 (triangle △), 5123

(cross ×) and 10243 (cross +).
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FIG. 3: Temporal evolution of, top: energy dissipation ε;
bottom: k−n inertial range prefactor n at resolutions 2563

(triangle △), 5123 (cross ×) and 10243 (cross +).

pation rate shown on figure 3 (top) with the correspond-
ing data in the viscous TG flow (see reference [12], figure
7 and reference [4], figure 5.12). Both the time for max-
imum energy dissipation tmax ≃ 8 and the value of the
dissipation rate at that time ǫ(tmax) ≃ 1.5 10−2 are in
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quantitative agreement.
A confirmation for Kolmogorov behavior around tmax

is displayed on figure 3 (bottom). The value of the
inertial-range prefactor n, obtained by a low-k least
square fit of the log of the energy spectrum with the
function cte−n log(k), is close to 5/3 (horizontal dashed
line) when t ≃ tmax.

Assuming Kolmogorov scaling E(k) ∼ ε2/3k−5/3 in
the k < kmin range and absolute equilibrium E(k) ∼
3k2Eth/k3

max in the k > kmin range, one obtains [10] a
first estimation km for the observed wavenumber kmin.

km ∼
(

ε

E
3/2
th

)2/11

k9/11
max . (8)

The ratio kmin/km is displayed on figure 4. It is seen
to be reasonably constant on the figure.
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FIG. 4: Time evolution of the ratio kmin/km at resolutions
2563 (triangle ∆), 5123 (cross ×) and 10243 (cross +).

However a detailed inspection of figure 1 strongly sug-
gests that the inertial-range spectra are not pure power
laws and that some kind of dissipative effects are present.
One may therefore try to relate the observed value of
kmin to the relaxation time τR, defined as the character-
istic time-scale of the response function (4) around the
high-k absolute equilibrium. The FDT (see text below
Eq. (5)) states that τR = τC , where τC is the equilibrium
correlation time. We have therefore estimated the values
of τC by performing (general periodic) Monte-Carlo com-
putations of the (shell averaged) correlation function (5).
The correlation time τC associated to wavenumber k is
found [10] to obey the simple scaling law

τC =
C

k
√

Eth

. (9)

The Monte-Carlo values for the constant C are displayed
on figure 5, where it is apparent that C ∼ 2.5, pro-
vided that scale separation (k ≪ kmax) holds. This
amounts to replacing the standard Navier-Stokes rela-
tion ε(k, t) = νk2E(k, t) by ε(k, t) = ν̄|k|E(k, t), where
ν̄ =

√
Eth/C and ε(k, t) = −∂E(k, t)/∂t is the dissipa-

tion spectral density.
Assuming that this dissipation takes place in a range

of width αkd around kd , we estimate the total dissi-
pation ε ∼ ν̄kdE(kd)αkd. This, together with E(kd) ∼
k2

dEth/k3
max yields the dissipative estimate for kmin

kd ∼
(

ε

E
3/2
th

)1/4

k3/4
max . (10)

Note that (8) supposes a pure power law throughout
the inertial range while (10) is a dissipative estimate.
They can be consistent with one another only if km > kd.
One finds

km/kd ∼
(

ε

E
3/2
th

)−3/44

k3/44
max . (11)
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FIG. 5: Monte-Carlo estimation of relaxation time around the
absolute equilibrium (see Eq. (9))

The assumptions thus appear to be consistent in the
limit kmax → ∞, provided that ε/Eth

3/2 does not de-
pend drastically on kmax. However, because of the lim-
ited range of variation of ε, Eth, and kmax it was not
possible to check numerically the exponents of (11).

Besides its dissipative effects, the spectral truncation
mainly acts as a barrier that blocks the flow of energy to
the small scales. Note that it might be possible, using
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visco-elastic materials such as wormlike micelles [13], to
experimentally generate such a blocking [14].

In this context, the truncated Euler equations appears
as a minimal model of turbulence. Let us mention that
Kolmogorov scaling has already been observed in non-
viscous systems, in the context of (compressible) low-
temperature superfluid turbulence [15, 16, 17]. This be-
havior has also been reproduced using simple Biot-Savart
vortex methods[18].

Note that spontaneous small-scale equilibration hap-
pening in isolated systems, such as the one studied in
the present Letter, should not be confused with equi-
libration resulting from contact with an external ther-
mostat. Indeed the reversible dynamics of the isolated
system generates spontaneously a (time and initial con-
ditions dependent) temperature.

In summary, we have observed Kolmogorov-like tur-
bulence in truncated Eulerian dynamics. Scaling laws
have been obtained for the dissipative effects that sponta-
neously appear in this time-reversible system. However,
it remains an open problem whether experiments using
visco-elastic materials and/or higher resolution runs will
confirm these laws.
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